Differential regulation of telomere and centromere cohesion by the Scc3 homologues SA1 and SA2, respectively, in human cells
نویسندگان
چکیده
Replicated sister chromatids are held together until mitosis by cohesin, a conserved multisubunit complex comprised of Smc1, Smc3, Scc1, and Scc3, which in vertebrate cells exists as two closely related homologues (SA1 and SA2). Here, we show that cohesin(SA1) and cohesin(SA2) are differentially required for telomere and centromere cohesion, respectively. Cells deficient in SA1 are unable to establish or maintain cohesion between sister telomeres after DNA replication in S phase. The same phenotype is observed upon depletion of the telomeric protein TIN2. In contrast, in SA2-depleted cells telomere cohesion is normal, but centromere cohesion is prematurely lost. We demonstrate that loss of telomere cohesion has dramatic consequences on chromosome morphology and function. In the absence of sister telomere cohesion, cells are unable to repair chromatid breaks and suffer sister telomere loss. Our studies elucidate the functional distinction between the Scc3 homologues in human cells and further reveal an essential role for sister telomere cohesion in genomic integrity.
منابع مشابه
The different ties that bind
The different ties that bind B efore they separate into daughter cells during mitosis, sister chroma-tids are held together by cohesin complexes. But these complexes aren't the same along the entire length of the chro-matids, according to Canudas and Smith: The version of cohesin that links sister telomeres is different from the form that fastens centromeres together (1). Cohesin consists of fo...
متن کاملThe many functions of cohesin--different rings to rule them all?
It is well known that somatic and germ cells use different cohesin complexes to mediate sister chromatid cohesion, but why different isoforms of cohesin also co-exist within somatic vertebrate cells has remained a mystery. Two papers in this issue of The EMBO Journal have begun to address this question by analysing mouse cells lacking SA1, an isoform of a specific cohesin subunit. When one cell...
متن کاملSA1 binds directly to DNA through its unique AT-hook to promote sister chromatid cohesion at telomeres.
Sister chromatid cohesion relies on cohesin, a complex comprising a tri-partite ring and a peripheral subunit Scc3, which is found as two related isoforms SA1 and SA2 in vertebrates. There is a division of labor between the vertebrate cohesin complexes; SA1-cohesin is required at telomeres and SA2-cohesin at centromeres. Depletion of SA1 has dramatic consequences for telomere function and genom...
متن کاملNuclear Import and Export Signals of Human Cohesins SA1/STAG1 and SA2/STAG2 Expressed in Saccharomyces cerevisiae
BACKGROUND Human SA/STAG proteins, homologues of the yeast Irr1/Scc3 cohesin, are the least studied constituents of the sister chromatid cohesion complex crucial for proper chromosome segregation. The two SA paralogues, SA1 and SA2, show some specificity towards the chromosome region they stabilize, and SA2, but not SA1, has been shown to participate in transcriptional regulation as well. The m...
متن کاملCharacterization of the Interaction between the Cohesin Subunits Rad21 and SA1/2
The cohesin complex is responsible for the fidelity of chromosomal segregation during mitosis. It consists of four core subunits, namely Rad21/Mcd1/Scc1, Smc1, Smc3, and one of the yeast Scc3 orthologs SA1 or SA2. Sister chromatid cohesion is generated during DNA replication and maintained until the onset of anaphase. Among the many proposed models of the cohesin complex, the 'core' cohesin sub...
متن کامل